Проекции точки

Проекции точки

It`s help
you!   By Taras, Stavropol.

На
местах попуска должны быть рисунки (плоскостей, эпюров и т.п.)

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального прое­цирования
заключается в том, что предмет проецируется на две взаимно перпендику­лярные
плоскости лучами, ортогональны­ми (перпендикулярными) к этим плоско­стям..

Одну из плоскостей проекций H распо­лагают
горизонтально, а вторую V — вертикально. Плоскость H назы­вают
горизонтальной плоскостью проек­ций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называ­ется осью координат и обозначается OX. Плоскости
проекций делят пространст­во на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают,
что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей
проекций. Так как эти плоскости непрозрачны,
то види­мыми для наблюдателя будут только те точки, линии и фигуры, которые располо­жены в пределах той же первой четверти.

При построении проекций необходимо по­мнить, что ортогональной
проекцией точки
на плоскость называется основание пер­пендикуляра,
опущенного из данной точки
на эту плоскость.

На рисунке показаны точка А и ее орто­гональные
проекции а1 и а2.

Точку а1 называют горизонталь­ной проекцией точки А, точку а2
— ее фронтальной проекцией. Каждая из них является
основанием перпендику­ляра,
опущенного из точки А соответ­ственно на плоскости H и V.

Можно доказать, что проекции точки всегда
расположены на прямых, перпенди­
кулярных оси ОХ и
пересекающих эту ось
в одной и той же точке. Действительно, проецирующие
лучи Аа1 и Аа2 определя­ют
плоскость, перпендикулярную плоско­стям
проекций и линии их пересечения — оси
ОХ.
 Эта плоскость пересекает H и V по прямым а1
а
x и а1 аx,, которые
образуют с осью OX и друг с другом прямые углы с вершиной в точке аx.

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a1 и a2, расположенные
на прямых, пересекающих
ось OX в данной точке под
прямым углом,
то они являются проекциями некоторой точки А. Эта точка определяется пересече­нием
перпендикуляров, восставленных из точек aи  a2  к плоскостям H и V.

Заметим, что положение плоскостей проекций в пространстве может
оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными,
могут быть вертикальными Но и в этом случае дока­занное выше предположение об
ориентации разноименных проекций точек
относи­тельно оси остается справедливым.

Чтобы получить плоский чертеж, состоя­щий из указанных выше проекций,
плос­кость H совмещают вращением вокруг оси OX с плоскостью V, как показано стрелками на рисунке. В
результате пе­редняя полуплоскость H
будет совмещена с нижней полуплоскостью V, а задняя полуплоскость H
с верхней полупло­скостью V.

Проекционный чертеж, на котором плос­кости проекций со всем тем, что
на них изображено, совмещены определенным
об­разом одна с другой, называется эпю­ром (от франц. еpure – чертеж). На рисунке показан
эпюр точки А .

При таком способе совмещения плоско­стей H и V проекции a1 и a2 окажутся
расположенными на одном перпендикуля­ре к оси OX. При этом расстояние a1ax от горизонтальной проекции точки до оси OX равно расстоянию от самой точки А до
плоскости V, а расстояние a2axот фронтальной
проекции точки до оси OX равно расстоянию от самой точки А до плоскости H.

Прямые линии, соединяющие разнои­менные
проекции точки на эпюре, усло­вимся называть линиями проекци­онной связи.

Положение проекций точек на эпюре зависит от того, в
какой четверти находит­ся данная точка. Так, если точка В распо­ложена во второй четверти, то после совмещения плоскостей обе проек­ции окажутся лежащими над осью OX.

Если точка С находится в третьей чет­верти, то ее горизонтальная проекция по­сле совмещения плоскостей окажется над осью, а фронтальная — под осью OX. На­конец, если точка D расположена в чет­вертой четверти, то обе проекции ее окажутся под осью OX. На рисунке пока­заны точки М
и N, лежащие
на плоскостях проекций.
При таком положении точка совпадает с одной
из своих проекций, дру­гая же
проекция ее оказывается лежа­щей на
оси OX. Эта особенность отражена и в обозначении:
около той проекции, с ко­торой совпадает сама точка, пишется за­главная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или чет­вертой четверти на одинаковом расстоя­нии от плоскостей проекций. Обе проекции совмещаются с самой точкой,
если послед­няя расположена на оси OX.

Выше было показано, что две проекции точки
определяют ее положение в про­странстве. Так как каждая фигура или тело представляет собой совокупность то­чек, то можно утверждать, что и
две орто­гональные проекции предмета
(при нали­чии буквенных
обозначений) вполне опре­деляют его
форму.

Однако в практике изображения строи­тельных
конструкций, машин и различных инженерных сооружений возникает необ­ходимость
в создании дополнительных проекций. Поступают так с единственной целью —
сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций пока­зана на
рисунке. Третья плоскость, перпендикулярная и H и V,
обозначается бук­вой W и называется профильной.

Проекции точек на эту плоскость будут также
именоваться профильными, а обоз­начают их заглавными буквами или циф­рами с индексом 3 (aз, bз, cз, … 1з, 2з, 33…).

Плоскости проекций, попарно пересека­ясь,
определяют три оси: ОX, ОY и ОZ, которые
можно рассматривать как систе­му прямоугольных декартовых координат в
пространстве с началом в точке О. Сис­тема знаков, указанная на рисунке, со­ответствует
«правой системе» координат.

Три плоскости проекций делят про­странство на
восемь трехгранных углов — это так называемые октанты. Нумера­ция октантов дана на рисунке.

Как и прежде, будем считать, что зри­тель,
рассматривающий предмет, находит­ся в первом октанте.

Для получения эпюра плоскости H и W вращают, как
показано на рисунке, до совмещения с плоскостью V. В результа­те вращения
передняя полуплоскость H оказывается совмещенной с нижней по­луплоскостью
V, а задняя
полуплоскость H — с верхней полуплоскостью V. При повороте на 90° вокруг оси ОZ передняя полуплоскость W
совместится с правой полуплоскостью V, а задняя полупло­скость W — с левой полуплоскостью
V.

Окончательный вид всех совмещенных плоскостей проекций дан на
рисунке. На этом чертеже оси ОX и ОZ, лежащие в
не подвижной плоскости V, изображены только один раз, а ось ОY показана дваж­ды. Объясняется это тем, что, вращаясь с плоскостью H, ось ОY на эпюре совме­щается с осью ОZ, а вращаясь
вместе с плоскостью W, эта же ось совмещается с осью ОX.

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— ОX, ОY, ОZ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ
ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в
соответствие точке для определе­
ния ее положения в пространстве или на
поверхности.

В трехмерном пространстве положение точки устанавливают с помощью
прямоу­гольных декартовых координат х, у и z.

Координату х называют абсциссой, у ординатой и zаппликатой. Абсцисса х определяет
расстояние от дан­ной точки до плоскости W, ордината у — до плоскости V и аппликата zдо плос­кости H. Приняв для отсчета координат точки систему, показанную на рисунке, составим
таблицу знаков координат во всех восьми октантах. Ка­кая-либо точка
пространства А, заданная координатами, будет обозначаться так: A (х, у, z).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точ­ка А, все    координаты которой положитель­ны, находится
в первом октанте

Координаты точки А являются вместе с тем и
координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i, j, k — единичные
векторы, направ­ленные соответственно вдоль координат­ных осей х, у, z (рисунок), то

ОА = ОAxi+ОАyj + ОАzk                                      ,где ОАХ,
ОАУ, ОАг —
координаты векто­ра ОА

Построение изображения самой точки и ее проекций на пространственной
модели (рисунок) рекомендуется
осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде
всего на осях координат от точки О
откладывают отрез­ки, соответственно
равные 5, 4 и 6 едини­цам длины.
На этих отрезках ( Оax , Оay , Оaz ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, проти­воположная началу координат, и будет определять заданную точку А. Легко заме­тить, что для определения точки А доста­точно построить только три ребра парал­лелепипеда, например Оax , axa1  и a1А или Оay , aya1  и a1A    и т. д. Эти
ребра образу­ют координатную ломаную линию, длина каждого звена которой
определяется со­ответствующей координатой
точки.

Однако построение параллелепипеда по­зволяет определить
не только точку А, но и все три ее ортогональные проекции.

Каждая из ортогональных проекций точки А, будучи
расположенной на плоско­сти, определяется только двумя координа­тами.

Так, горизонтальная проекция a1 опре­деляется
координатами х и у, фронтальная проекция a2
координатами х и z, про­фильная проекция a3координатами
у и z. Но две любые проекции
определяются тремя координатами. Вот почему
задание точки двумя проекциями
равносильно за­данию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции
a1 и a2 окажутся на одном перпендикуляре к оси ОX, а проекции a2 и a3  — на
одном пер­пендикуляре к оси OZ.

 

Что касается проекций a1 и a3 , то и они связаны
прямыми a1ay и a3ay , перпендикулярными оси ОY. Но так как эта ось на эпюре занимает два
положения, то отре­зок a1ay не может быть продолжением
отрезка  a3ay .

Построение проекций точки А (5, 4,
6)
на эпюре по заданным координатам выполня­ют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают
отрезок Оax = х (в нашем случае х = 5),
затем через точку ax прово­дят перпендикуляр к оси ОX, на котором с учетом знаков откладываем отрезки axa1 = у (получаем a1 ) и axa2 = z (получаем a2 ). Остается построить профильную проекцию точки a3 . Так как профильная и фронтальная проекции точки должны быть
расположены на одном перпендикуляре к оси OZ , то через a3 проводят прямую  a2az ^ OZ.

Наконец, возникает последний вопрос: на каком расстоянии от оси ОZ должна находиться  a3 ?

Рассматривая координатный параллелепипед (см.
рисунок), ребра которого aza= Oayaxa1 = y заключаем,
что ис­комое
расстояние aza3  равно у. Отрезок aza3 откладывают вправо
от оси ОZ, если у>0, и влево, если у<0.

Проследим за тем, какие изменения про­изойдут на
эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет
перемещаться по прямой, перпендикуляр­ной плоскости V.
При таком движении будет меняться только
одна координата у, показывающая расстояние от точки до плоскости V. Постоянными будут
оста­ваться координаты х и z , а проекция
точ­ки, определяемая этими координатами, т. е. a2 не изменит своего положения.

Что касается проекций a1 и a3 , то пер­вая начнет приближаться к оси ОX, вто­рая — к оси ОZ. На рисунках новому положению точки соответствуют обозначе­ния
a1 (a1a2a31 ). В тот момент, когда точка
окажется на плоскости V (y
= 0), две из трех проекций      (a12и a32) будут лежать на осях.

Переместившись из I октанта во II, точ­ка
начнет удаляться от плоскости V, ко­ордината у станет
отрицательной, ее абсо­лютная величина будет возрастать. Горизонтальная
проекция этой точки, будучи расположенной на задней полуплоскости H, на эпюре окажется выше оси ОX, а профильная
проекция, находясь на задней полуплоскости
W,  на эпюре будет слева от оси ОZ. Как всегда,
отрезок az
a
33 = у.

На последующих эпюрах мы не станем обозначать
буквами точки пересечения ко­ординатных осей с линиями проекционной связи. Это
в какой-то мере упростит чер­теж.

В дальнейшем встретятся эпюры и без координатных
осей. Так поступают на практике при изображении предметов, когда существенно
только само изображе­
ние предмета, а не его положение относи­тельно
плоскостей проекций.

Плоскости проекций в этом случае определены с
точностью лишь до параллельно­го переноса (рисунок). Их обычно переме­щают
параллельно самим себе с таким расчетом, чтобы все точки предмета оказа­лись над плоскостью H и перед плоско­стью V. Так как положение оси X12 оказы­вается
неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной
оси. При переходе к эпюру плоскости H и V совмещают
так, чтобы разноименные проекции точек были распо­ложены на
вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не
определяет их положения в пространстве, но позволяет судить
об их относительной ориентировке.
Так, отрезок △x характери­зует смещение точки А по
отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположе­на
левее точки В. Относительное смещение точки в направлении,
перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем
примере ближе к наблюдателю, чем точка В, на расстоя­ние, равное △y.

Наконец, отрезок △z показывает превы­шение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии
справедливо указывают, что при решении многих задач можно обходиться без осей
координат. Однако полный отказ от них нельзя при­знать целесообразным.
Начертательная геометрия призвана подготовить будущего инженера не только к
грамотному выпол­нению чертежей, но и к решению различ­ных технических задач,
среди которых не последнее место занимают задачи про­странственной статики и
механики. А для этого необходимо воспитывать умение ориентировать тот или иной
предмет отно­сительно декартовых осей координат. Ука­занные навыки будут
необходимы и при изучении таких разделов начертательной геометрии, как
перспектива и аксономет­рия. Поэтому на ряде эпюров этой книги мы сохраняем
изображения координатных осей. Такие чертежи определяют не только форму
предмета, но и его расположение относительно плоскостей проекций.